

Relay Podule

Description

The Podule system evolved because of the need to control audio/video installations. Many of these installations required simple add on facilities such as switch detector, serial command generators, blind and screen controllers. Each of these required IKON AVS to design and produce a one off interface. To avoid this wasted effort the Podule range of interface units was born. Each Podule contains a collection of inputs and output, which can be configured by a user to implement various control functions.

DESCRIPTION1
PODFLOW 3 SOFTWARE
DEVICE REFERENCE4
PHYSICAL INPUT
PODNET SIGNALS
FLIP FLOP 10 TIMER DEVICE 11 LOGICAL GATE DEVICE 13 LOGICAL GATE EMULATOR 14
PROGRAMMING THE POD15
POD EXPORT16
POD DOWNLOAD16
EMULATION18
EMULATION TOOLBAR
APPLICATIONS
CONTROL OF ELECTRIC SCREEN & PROJECTOR
APPENDIX A
INPUT CONFIGURATION25 INPUT CONNECTION DETAILS
APPENDIX B26
INSTALLING PODULES
APPENDIX C
Relay Podule Specification28Power Requirements28Mechanical Data28
APPENDIX D29
PIN OUT OF DC PLUG, RS232 & PODNET29
APPENDIX E
RELAY PODULE - SCREW TERMINALS
MANUFACTURERS INFORMATION

PodFlow 3 Software

Main PodFlow screen with Relay Podule selected.

Refer to the PodFlow programmer's reference manual for full PodFlow 3 programming information.

Device Reference

Physical Input

Number of devices per POD:-Input Trigger Level:-Output Type:-Input connections:-Connections per output:- 8 Digital or Analog Digital 1 or 0 Screw terminal >1

The maximum input voltage must not go below 0V or exceed +5V DC (See Appendix A).

Input Configuration

Inputs

All inputs 1 to 4 are digital only whilst inputs 5 to 8 can be Digital or Analog. Select the input from the Terminal list and Name as required.

Selecting threshold or window will put the inputs into Analog mode.

In DIGITAL mode logic thresholds are:-Logic 1 > 2.0v Logic 0 < 0.7V

In THRESHOLD mode the output status will change when the DC input level exceeds the high threshold and only return low when it drops below the Low threshold.

In WINDOW mode the output is only high when between the high and low thresholds.

You can set the input to be active High or Low under the POD tab in the main window. Default is pull up.

• C 2 C 2 C 4 C 5 C 6	Type Digital Threshold Window
C 7 C 8	Invert

Digital Input

 ● 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8 	Type Thresholds C Digital 4.80 ÷ ● Threshold 0.20 ÷ C Window Response 1 ÷ Attack 1 ÷ Decay
--	--

Analog Input

Name

Each device can be given a "Name", this is displayed below the device in the diagram.

Invert

Inverts the state of the output. By default it is ON requiring the input to be grounded for activation.

Physical Output

Number of devices per POD:-4 x Relays DPDT + 4 x Open CollectorInput Trigger Level:-DigitalConnections per input ->1Connections per output:->1 (See Appendix C for Current ratings)

These can control external relays, Indicators or opto-isolators. After dragging the device onto your worksheet double click on the device to open a configuration window like the one below.

Physical Output
Output
Twin contact only
 Output On = 1 Output On = 0
Name
Done

Outputs 1 to 4 control the internal double pole double change over relays, rated at 240V AC 8A. These are labelled on the POD as NO1a/b, W1a/band NC1a/b for output 1 and NO2 etc. for output 2.

Outputs 5 to 8 are provided with open collectors rated at <u>30@100mA</u> DC and labelled OC1, OC2 etc.

RS232 Input

Number of devices per POD:-Input Trigger Level:-Output Type:-Connections per input:-Connections per output:- 24 (up to 32 bytes each) RS232 Via port1 Edge triggered 0 to 1 1 (Port 1) >1

When the RS232 input Device symbol is double clicked it displays a 'Select Message' window allowing the assignment of the message it is to respond to.

When a message is selected a side window opens, this is a repeat of the RS232 Tab and allows the setting up, or verification of the message length and content. A warning is also given if the message is already assigned within the Podule.

RS232 Output

Number of devices per POD:-Input Trigger Level:-Output Type:-Connections per input:-Connections per output:- 24 (up to 32 bytes each) Edge 0 to 1 RS232 >1 1, RS232 port 1

Accessed from the 'D' connector the RS232 output is configured under the RS232 tab. Each required message output will need a new RS232 Output device and these require configuring as to which message they are to transmit. The device supports multiple inputs.

Double click on the RS232 Output Device to access the configuration screen.

Configuration is as per the inputs with the message transmitted when active. The On Level window configures transmission on a Low to High transition (1) or Hi to Low transition (0).

Multiple inputs can be connected to the device as it responds only to a level change and not a fixed level.

The above example has been set to transmit message 5 which is an ASCII code s,t,a,r,t, when the RS232 output receives a Logic Level 1 on its input.

PodNet Signals

The PodNet currently supports up to 255 simultaneous messages with these a combination of Digital and Analog. You should only have a single Podule originating the message but all Podules can receive it. On any Podule, if the status of a message is changed the Podule transmits this change immediately, or if the network is busy in the next available time slot, this is generally within 5mS.

All Podules automatically retransmit their locally originated PodNet messages at an interval of approximately 35 seconds to ensure complete synchronisation between units.

PodNet input

Number of devices per POD:-Input Trigger Level:-Output Type:-Connections per input:-Connections per output:-

32
PodNet Data
Digital
1 (PodNet data)
>1

PodNet Message
PodNet address number
Name
Done

PodNet Message

Enter the message number to be used either by typing in the message number or using the buttons.

For convenience you can give the PodNet input a suitable name.

PodNet Output

NET 💼

Number of devices per POD -Input Trigger:-Output Type:-Connections per input:-Connections per output:- 32 Digital Digital 1 1 (PodNet OUT)

PodNet Message
- PodNet address number
3 🖬
- Name
ļ.
Done

PodNet Message

Enter the message number to be used either by typing in the message number or using the buttons. For convenience you can give the PodNet

For convenience you can give the PodNet input a suitable name.

Podules will not 'see' on their input a transmitted message that uses the same message number as a PodNet output used on the same Podule. This is to eliminate the possibility of creating an infinite feedback loop.

*Note; PodNet outputs can take up to 30 seconds to settle after switch on.

Flip Flop

DIS	FL	IP
CLK	FL	OP
RST		OUT

Number of devices per POD:-	16
Input Trigger Level:-	DIS = Level
	CLK & RST = Edge 0 to 1
Output Type:-	Digital
Connections per input:-	>1
Connections per output:-	>1

Whilst similar to a normal 'D' type in many respects the Podule version has a number of specialised attributes.

CLK The clock input, it will ignore static states and is only triggered by a Lo to Hi transition allowing multiple sources to be linked to it. On each transition the output will change state. This is unless DIS is tied to a Hi signal – see below.

RST The reset pin triggered by a Lo to Hi transition allowing multiple sources to be linked to it. When triggered it will force the output Lo.

DIS When High this disables the CLK input. This input is both transition and level sensitive and if connected to the Flip-Flop's output will change the operation to a Set and Reset type using CLK as set and RST as reset.

Flip-Flop connected for toggle action with reset.

Flip-Flop connected for Set - Reset operation.

Timer Device

00:00:01.0 Fixed Ong

Number of devices per POD:-Input Trigger Level:-Output Type:-Connections per input:-Connections per output:-

8 Edge 0 to 1or 1 to 0 (see below) Digital 1 >1

Timer Mode Fixed On Maximum On Minimum On 🗅 Delayed On 🛛 Extended On C Minimum Off Period-Hours 0 Minutes 0 . Seconds 1 Name Done

The device will only accept a single input for triggering and can be used in multiple timing modes. The time period can be set from 1 second to 18 hours.

The time period set along with the type of timer selected is displayed above the device.

Any name is shown below the device.

Fixed On

The output will follow the input state. It will remain High for the on timer period, independent of any other input changes.

Maximum on

The output will follow the input state up to a maximum time set by the on timer.

Minimum On

On for a set time even if the trigger is removed. The output remains high whilst the input remains high, even if the time period has expired.

Delayed On

Output remains low for the set period after a Lo to Hi transition and then goes high whilst the input remains Hi.

Extended On

Output remains High for the set period after a Hi to low trigger.

Min Off

Output will remain low for the set period, even if the input is re-triggered.

Period

Adjustable time in Seconds, Minutes or Hours 1 to 59 Seconds 1 to 59 Minutes

1 to 17 Hours

If no time is set it defaults to 1 second.

Logical Gate Device

1	+1	Ļ,
2	+1	Ğ
3	+1	ċ
4	+1	0

Number of devices per POD:-	16
Input Trigger Level:-	Level
Output Type:-	Digital
Connections per input:-	1
Connections per output:-	>1

Double click on the Logic Gate to configure as:-

Logical gate		
Input modes Value $ \begin{array}{c} 1 + \circ \circ = \\ 2 + \circ \circ = \\ 3 + \circ \circ = \\ 4 + \circ \circ = \\ \end{array} $ Uutput Invert Output		
Name		
Done Help		

Each input can be set as an AND gate or an OR gate.

If, as shown, the + button is selected it is part of the OR gate.

As part of the OR gate the input will be active if the signal is equal to the number on the right. The example as shown, if any of the four inputs are Hi (1) for the gate output will be high.

The Invert Output box will change the status of the output from Hi to Lo when all inputs are Hi.

Logical gate	
Input modes 1 + C ● = 2 + C ● = 3 + ● C = 4 + ● C = Output □ Invert Out	Value 1 1 2 1 3 0 4 0 tput
Name	
Done	Help

Inputs 3 & 4 are still part of the OR gate but looking for a low (0) to be valid - if unconnected effectively not used.

Inputs 1 & 2 have the = button selected and are part of the AND gate.

As part of the AND gate if either input goes high the output will be high.

The Invert Output box will change the status of the output from Hi to Lo when either input 1 or 2 are Hi.

Logical Gate Emulator

Under 'Help' an emulator allows a simulation of operation.

Is Used?

Select if the gate input is to be used or not.

Input Value

Set the logic level at the input, either 1 or 0.

Value

Set the level the input is to respond to.

Input Mode

This toggles between + for an 'OR' input and = for an 'AND' input. Changing these will alter the logic diagram to suit the required logic.

Invert Output

Lets you invert the output if required.

Displayed As

This group of radio buttons change to reflect the emulation settings and directly correlate to how the device itself needs to be set to achieve the emulated logic.

Programming the Pod

Use a serial lead as described in Appendix D to program any of the Podules. When you click on this icon you may get a message

This is because some of the devices have not been set up properly. You may have an input device on you project that has no terminal selected.

Once all the devices have been corrected and you then press A window will appear as it searches for pods, Fig 1, if none are found you will get a window like Fig 2, check cable connection and power to the Pod. Once communications has been established a window like Fig 3 will appear. This shows that there is a Relay Pod connected to com port 1. Click the radio button next to the Pod you wish to program.

Pod program	Pod program	Pod program
	01	Relay Pod(B) 2.1
Please Wait	O 3 [Оз [
Searching for Pods	Search for Pod	Search for Pod
	Program Pod	Program Pod
	Cancel	Cancel
Fig 1	Fig 2	Fig 3

Note:- Fig 3, also shows the revision of the firmware within the POD, New versions, along with PodBootstrap to load them are available on our web site at <u>www.ikonavs.com</u>.

Whilst the main PodFlow data is being sent the progress display as per Fig 4 is displayed with this changing to Fig 5 when the programming is complete. At this point you can program an additional Podule with the same program or exit.

All sent ok 🛛 🛛 🔀	
Program another pod	
Yes No	

Pod Export

Pod Export allows a configured file to be exported for download to a Podule without having to install PodFlow on the PC being used. This is intended for system designers to allow customers to update configurations without access to the main PodFlow diagram.

EXP

. A 'Save As' box will open allowing the To create an export file select user to specify where the file is to be saved and also to specify a name. The suffix .PEX will be added.

Click on 'Save' to export. When exported the following conformation will be given. Click on 'OK' to continue.

Successful 🛛 🕅
C:\Shared Documents\Christmas\test.PEX has been successfully exported
OK]

Pod Download

To utilise a .PEX file it is necessary to install 'Pod Download' on the PC to be used. This is available on the Ikon CD and also from the website at www.ikonavs.com. Once installed it is only necessary to double click on the .PEX file to be downloaded to automatically start the configuration.

Once started the program searches for a compatible Podule on the serial ports in an identical manner to the normal programming method.

A window will appear as it searches for pods, Fig 1, if none are found you will get a window like Fig 2, check cable connection and power to the Pod. Once communications has been established a window like Fig 3 will appear. This shows that there is a Relay Pod connected to com port 1. Click the radio button next to the Pod you wish to program.

Pod program	Pod program	Pod program
	O 1 [🖲 🗓 Relay Pod(B) 2.1
Please Wait	C 3	C 3
Searching for Pods	Search for Pod	Search for Pod
	Program Pod	Program Pod
	Cancel	Cancel
Fig 1	Fig 2	Fig 3

Note:- Fig 3, also shows the revision of the firmware within the POD, New versions, along with PodBootstrap to load them are available on our web site at www.ikonavs.com.

Whilst the main PodFlow data is being sent the progress display as per Fig 4 is displayed with this changing to Fig 5 when the programming is complete. At this point you can program an additional Podule with the same program or exit.

The Emulation mode allows you to test your PodFlow configuration prior to loading into a Podule. Click on the Emulate icon on the toolbar to open the emulation.

Emulation Toolbar

LOG	RS 232 output events are logged during the emulation.
	Use to view and hide the log.
×	Clear the log.
Timer Speed	Use to speed up timer operation during emulation.
Ø	Run timers in real time, (default setting).
\oplus	Run timers at x10.
	Run timers at x60, i.e. 1 min in 1 second.
RUN	Start the emulation.
<u>m</u>	Start the emulation running.
\$	Step through each operation manually.
Emulation Speed	Allows the emulation to be slowed down.
L	As shown emulation is at 100% speed. Slide to left to slow to 5% minimum.

Input Emulation

Each input has a set of controls to set the input state. These change between different types of inputs.

Digital Input & Digital PodNet Input	When set for M omentary operation the Invert button is available. The devices output is only high when the lower button is operated. If Invert has been changed then the output is high until the lower button is operated. When set for T oddle the Invert button is hidden and each operation of the lower button toddles the output status.

Analog Input & Analog Input	If the Podule input is set for Analog, the push buttons are changed for a slider to emulate an input voltage between 0V and +5V. The numbers to the right of the slider show the current voltage, in this case 2.51V.
RS232 Input	RS232 inputs are emulated by operation of the button below the symbol. When operated PULSE is displayed in the window above the button and the devices output pulses high.

Emulation Outputs

Each type of output device has it's own method of displaying the current status.

OC and Balay Outputs	
	OC (Open Collector) outputs display their current status as a flag showing 0 for off and 1 for on.
	Outputs 1 also 2 also operate relays. For these outputs the status of the relay contacts is shown.
RS232 Outputs	
- 83232	When an RS232 output is activated the message will be displayed to the right of the symbol. It is also logged.
Analog Outputs	
1 +01.00 +00.00 00.00 10.00 1 1 2 2 2	The Analog output emulation is displayed as a bargraph. The Red graph depicts the relative Analog level whilst the numbers reflect the actual level having accounted for any offsets and multipliers.

Running the Emulation

- 1 Zoom, maximise, turn on/off the grid etc. as per personal preference.
- 2 Set all inputs to the start condition, by default this is Momentary & Inverted.
- 3 Select RUN 🏙 .
- 4 Manipulate inputs as appropriate.
- 5 Change the emulation speed, timer speed etc if required.

Applications

Due to the highly configurable nature of Podules their possible applications are virtually infinite. Some possible applications are:-

Control of Electric Screen & Projector

In the above example a **Relay Podule** is used to provide 240V power control over an electric screen as well as provide the RS232 control for the projector. The main system control is from a **Wall Podule** connected via the PodNet. This panel allows direct control of the screen as well as control over the projector. Typically the system would be programmed for automatic operation of the screen when the projector is turned on and off.

The local control panel is used for occasions when the projector is not required.

PodFlow diagram - Relay Demo1.PD3

Power Sequencing

This application used the Relay Podule for On and Off power sequencing. Typically, once the 'System ON' push is operated the four mains circuits are operated in sequence to minimise inrush current. Once a further time delay to allow equipment to settle has elapsed the amplifier mute is removed and if required the Plasma Screen turned on.

On operation of 'System OFF' the reverse procedure is triggered.

PodFlow Diagram - Relay DEMO2.PD3

Loudspeaker Zoning

In a number of 100V line PA installations it is often necessary to route a paging message to one zone only or a combination of zones. In this application the remote control is via RS232 with this used to switch on and off zones via the **Relay Podules** internal relays.

PodFlow Diagram - Relay DEMO2.PD3

Appendix A

Input Configuration

Inputs

To protect the inputs from excessive voltages each input has 1k ohm input resistor and diode clamps to 0V and +5V. This clamp allows input levels to be between a max +/-10V. For digital inputs

- 1. Logic high is any voltage greater than +2.0V
- 2. Logic low is any voltage less than +0.7V

Analog inputs of between 0V and +5V, voltages outside this are effectively clamped to either 0 or +5V.

Each input is provided with a 47k ohm resistor; this can be configured as either a pull up (to +5V) or as a pull down (0V). (Default pull up)

Debounce

Each input has a built in debounce of min 50ms to a max of 150ms depending on how complex the Podule project.

Input connection details

Typical connection details for digital inputs are

Typical connection details for threshold/Analog inputs are

Appendix **B**

Installing Podules

Mechanical installation and connecting of the Podule should be carried out before any power is applied. Podules should not be used in areas of extreme heat or moisture.

Din Rail Mounted Models

Podules are designed for mounting onto standard 35mm 'top hat section' din rails. The rail can be within a rack or control cubical or fitted to any suitable surface.

Refer to appendix D for connecting details. The use of bootlace ferrules on cables and finger trunking or similar for cable management is highly recommended.

Voltages over 50V

If using voltages over 50V on the relay terminals, it is recommended that the Relay Podule is housed in a secondary enclosure to protect the terminals for accidental contact. Suitable enclosures are availabel from Ikon AVS and its distributors or from most good electrical wholesalers.

Please refer to appendix E for important information when using voltages over 110V.

Powering Multiple Pods

PodNet Buss

The PodNet bus uses RJ45 connectors and cat 5 cables. Each Podule is provided with two RJ45 connectors so that a simple daisy chain up to the maximum of 32 Podules can be created. The Podules at the extreme ends of the network must have their CAN A and CAN B terminals linked as shown below. On the 'R' series Podules this link is a push button.

Power supply

All Podules operate from a 24V D.C. supply. Screw terminals, and / or a DC connector are provided on each Podule to allow easy daisy chaining, as shown below up to a maximum of 6, then another power supply needs to be added.

The 24V supply is also feed through the cat 5 PodNet network so only one Podule on the network needs to be connected to a power supply (See appendix C for current Consumptions.)

Appendix C

Relay Podule Specification

- 8 I/P 4 x Digital or Analog
 - 4 x Digital
- 8 O/P 4 x Relays (Relays DPDT 240V AC, 110V DC, 8A), 4 x Open Collectors, 30V 100ma max.
- 1 Serial Port

Up to 24 Different O/P Strings (up to 32 Bytes Long) Up to 24 Different I/P Strings (up to 32 Bytes Long)

2 PodNet Ports

Up to 32 messages in and out

Internal Devices

16 x Flip/Flops 8 x Timers

16 x Logical Gates

2 x Analog Pots

Power Requirements

Voltage 24V DC, 18V Min, 30V max.

Current Requirements

Quiescent current 80mA (inrush current 220mA). Relay coil current 20mA each. Open Collect current max 100ma each. RS232 Tx, 12mA per port.

Mechanical Data

Wall Podule	105mm (W) x 90mm (H) x 60mm (D) excluding
	connectors.

Nett weight = 370g.

Appendix D

Pin out of DC Plug, RS232 & PodNet

Programming Lead, PC to POD Connection Details of "D" Type connectors

PC End	POD End
Female 9 way D	<u>Female 9 way D</u>
Pin 2	Pin 2
Pin 3	Pin 3
Pin 5	Pin 5
Pin 7	Pin 7

Podule RS 232 Pin OUT

Pin 2 Tx, Data O/P Pin 3 Rx, Data I/P Pin 5 Ground (0V)

PodNet Connector

IN	OUT		
1 8	1 8		

	IN		OUT	RJ 45 Patch
Pin 1	24V In	Pin 1	24VOut	Orange
Pin 2	24V in	Pin 2	24V Out	Orange/white
Pin 3	N/C	Pin 3	N/C	Green/White
Pin 4	CAN H	Pin 4	CAN H	Blue
Pin 5	CAN L	Pin 5	CAN L	Blue/White
Pin 6	N/C	Pin 6	N/C	Green
Pin 7	0V	Pin 7	0V	Brown/White
Pin 8	0V	Pin 8	0V	Brown

CAUTION DO NOT INTERCONNECT TO ETHERNET OR PERMANENT DAMAGE MAY OCCUR TO THE ETHERNET DEVICES.

DC Connector

2.1mm Centre pin +V

Appendix E

Relay Podule - Screw Terminals

DC INPUT END of RELAY PODULE

	Lower	Upper			Upper	Lower	
	0V	+24V	IN	Relay 1	NO1b	NO1a	Relay 1
	0V	+24V	OUT	Relay 1	W1b	W1a	Relay 1
	0V	+5V	OUT	Relay 1	NC1b	NC1a	Relay 1
IN	IN 2	IN 1	IN	Relay 2	NO2b	NO2a	Relay 2
IN	IN 4	IN 3	IN	Relay 2	W2b	W2a	Relay 2
IN	IN 6	IN 5	IN	Relay 2	NC2b	NC2a	Relay 2
IN	IN 8	IN 7	IN	Relay 3	NO3b	NO3a	Relay 3
	0V	+24V	OUT	Relay 3	W3b	W3a	Relay 3
OUT	OC2	0C1	OUT	Relay 3	NC3b	NC3a	Relay 3
OUT	OC4	OC3	OUT	Relay 4	NO4b	NO4a	Relay 4
	0V	+24V	OUT	Relay 4	W4b	W4a	Relay 4
	CAN B	CAN A		Relay 4	NC4b	NC4a	Relay 4

IMPORTANT

Relays may be connected and used as double pole only up to 110V AC/DC. For voltages in excess of this, i.e. UK mains of 240V AC, the relays should only be used as single pole utilising the 'a' set of contacts.

When connecting external motor or similar loads the use of contact suppression is recommended.

Electromagnetic Compatibility

This equipment has been designed, manufactured and tested to conform to the European EMC directives EN55103-1 & EN55103-2 for classifications E2 and E4.

Limitations as to use:	The specified equipment is not to be mounted adjacent to RF transmitting or receiving equipment.

Manufacturers Information

The RELAY PODULE is manufactured in England by Nebula Audio Ltd.

For service or warranty advice please initially contact your supplier. Alternatively contact the manufactures at:-

Nebula Audio Ltd

40 Saint Dunstans Close Worcester Worcestershire WR5 2AJ

Telephone: +44 (0) 1299 250991

Website www.ikonavs.com

Technical support e-mail

support@ikonavs.com

Document Issue Number RPM V1021